作为应用离心管柱滤器提取蛋白及亚细胞结构的先驱

英文特生物技术(北京)有限公司成功研发出五十多个全新的生命科学研究领域蛋白提取产品,其中具有多个特色产品,为蛋白提取分 离带来了新方案, 从原有的溶液法转换为柱式提取法。我公司产品 均具有快捷、易用、产量高及重复性好的特性。在短短几年中,产品 以其稳定的品质获得了世界各国越来越多的科研,药物开发及临床诊 断机构的青睐。



    订购信息:SM-005-P / 5870.00元(50 Preps)

    Minute™ 植物膜蛋白提取试剂盒 SM-005-P

    Minute™ Plasma Membrane Protein Isolation Kit for Plants

    描述:

    植物膜蛋白占植物细胞总蛋白的很小一部分,但是在植物生理学中起着非常重要的作用。传统的植物膜蛋白分离纯化方法是蔗糖密度梯度离心法和双液相法。这些方法虽然比较有效,但是需要超高速离心和大量的起始原材料,操作过程十分繁琐和费时。本试剂盒解决了植物膜蛋白提取中的难点。植物组织首先通过缓冲液 A 中致敏,匀浆,然后通过离心管柱,在此过程中匀浆的组织通过柱子特有的 Z 字形通路后细胞膜被切割成大小相等的碎片,后续无需超高速离心,通过差速离心和密度离心可将天然的质膜蛋白从未破裂的细胞,细胞核,细胞质和细胞器的混合物中分离出来。在每次实验中仅需使用相同量的起始材料,离心力和离心时间,即可高度富集膜蛋白,并保证一致性良好。整个操作过程大约 1 小时可以完成。
    应用:

    试剂盒用于快速从植物组织中分离天然膜蛋白,可应用于 SDS-PAGE,immunoblottings,ELISA,IP,膜蛋白质结构分析,2-D,酶活性测定及其他应用。
    储存条件:

    -20℃储存

    参考文献:SM-005-P文献列表
    • 1. Shen, Q., Bourdais, G., Pan, H., Robatzek, S., & Tang, D. (2017). Arabidopsis glycosylphosphatidylinositol-anchored protein LLG1 associates with and modulates FLS2 to regulate innate immunity.Proceedings of the National Academy of Sciences, 201614468.
      2. Zhiyuan Lv, Yan Huang , Bi Ma1 ,Zhonghuai Xiang , Ningjia He(2018).1LysM1 in MmLYK2 is a motif required for the interaction of MmLYP1 and MmLYK2 in the chitin signaling.Plant Cell Reports.doi.org/10.1007/s00299-018-2295-4.
      3. Jimi C Miller,etal (2018). Heterotrimeric G-proteins in unfolded protein response mediate plant growth-defense tradeoffs upstream of steroid and immune signaling.CSH PERSPECT BIOL.doi.org/10.1101/438135.
      4. Wang Q etal (2018).Resistance protein Pit interacts with the GEF OsSPK1 to activate OsRac1 and trigger rice immunity.Proc Natl Acad Sci U S A.2018 Nov 16. pii: 201813058. doi: 10.1073/pnas.1813058115.
      5. Si Ma etal (2019).Phloem loading in cucumber: combined symplastic and apoplastic strategies.The Plant Journal.DOI: 10.1111/tpj.14224.
      6. Shuai Zhang et al(2019).In rose, transcription factor PTM balances growth and drought survival via PIP2;1 aquaporin.Natureplants.Doi.org/10.1038/s41477-019-0376-1.
      7. Cheng Liu, Dayong Cui, Jingbo Zhao, Na Liu, Bo Wang, Jing Liu, Enjun Xu, Zhubing Hu, et al(2019).Two Arabidopsis Receptor-Like Cytoplasmic Kinases SZE1 and SZE2 Associate with the ZAR1-ZED1 Complex and Are Required for Effector-Triggered Immunity.Molecular Plant.DOI: 10.1016/j.molp.2019.03.012
      8. Jizong Wang*, Meijuan Hu*, Jia Wang*, Jinfeng Qi, Zhifu Han, Guoxun Wang, Yijun Qi, Hong-Wei Wang†, Jian-Min Zhou†, Jijie Chai Reconstitution and structure of a plant NLR resistosome conferring immunity.Science .DOI: 10.1126/science.aav5870.
      9. Zhang, X., Zhang, H., Lou, X., & Tang, M. (2019). Mycorrhizal and non-mycorrhizal Medicago truncatula roots exhibit differentially regulated NADPH oxidase and antioxidant response under Pb stress.Environmental and Experimental Botany.doi.org/10.1016/j.envexpbot.2019.04.015

      10. Li, X., Li, N., & Xu, F. (2019). Increased autophagy of rice can increase yield and nitrogen use efficiency (NUE).Frontiers in Plant Science, 10, 584.doi: 10.3389/fpls.2019.00584
      11. Yuan, N., Balasubramanian, V. K., Chopra, R., & Mendu, V. (2019). The photoperiodic flowering time regulator FKF1 negatively regulates cellulose biosynthesis.Plant Physiology, pp-00013.DOI:10.1104/pp.19.00013
      12.Xue Zou, Mengyuan Liu, Weihua Wu, Yang Wang. (2019).Phosphorylation at Ser28 stabilizes the Arabidopsis nitrate transporter NRT2. 1 in response to nitrate limitation.Journal of integrative plant biology.doi: 10.1111/jipb.12858.
      13. Chai, H., Guo, J., Zhong, Y., Hsu, C. C., Zou, C., Wang, P., ... & Shi, H. The plasma‐membrane polyamine transporter PUT3 is regulated by the Na+/H+ antiporter SOS1 and protein kinase SOS2.New Phytologist.
      14. Wang, W., Liu, N., Gao, C., Cai, H., Romeis, T., & Tang, D. The Arabidopsis exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane.New Phytologist.

      15.Laohavisit, A., Wakatake, T., Ishihama, N., Mulvey, H., Takizawa, K., Suzuki, T., & Shirasu, K. (2020). Quinone perception in plants via leucine-rich-repeat receptor-like kinases.Nature, 1-6.

      16.Derkacheva, M., Yu, G., Rufian, J. S., Jiang, S., Derbyshire, P., Morcillo, R., ... & Macho, A. (2020). The Arabidopsis E3 ubiquitin ligase PUB4 regulates BIK1 homeostasis and is targeted by a bacterial type-III effector. bioRxiv.

      17.Brillada, C., Teh, O. K., Ditengou, F. A., Lee, C. W., Klecker, T., Saeed, B., ... & Hoehenwarter, W. (2020). Exocyst subunit Exo70B2 is linked to immune signalling and autophagy.The Plant Cell.

      18.Zhen, X., Zheng, N., Yu, J., Bi, C., & Xu, F. (2021). Autophagy mediates grain yield and nitrogen stress resistance by modulating nitrogen remobilization in rice.PloS one,16(1), e0244996.

      19.Jacob, P. M., Kim, N. H., Wu, F., El Kasmi, F. M., Walton, W. G., Furzer, O. J., ... & Dangl, J. L. (2021). The plant immune receptors NRG1. 1 and ADR1 are calcium influx channels. bioRxiv.

      20.Su B., Zhang X., Li L., Abbas S., Yu M., Cui Y., Baluska F., Hwang I., Shan X., and Lin J. (2021). Dynamic spatial reorganization of BSK1 complexes in the plasma membrane underpins signal-specific activation for growth and immunity.Mol. Plant.14, 1–16.

      21.Yuan, M., Jiang, Z., Bi, G. et al. Pattern-recognition receptors are required for NLR-mediated plant immunity.Nature(2021). https://doi.org/10.1038/s41586-021-03316-6

      22.Ngou, B.P.M., Ahn, HK., Ding, P. et al. Mutual potentiation of plant immunity by cell-surface and intracellular receptors.Nature(2021). https://doi.org/10.1038/s41586-021-03315-7

      23.Krausko, M., Labajová, M., Peterková, D., & Jásik, J. (2021). Specific expression of AtIRT1 in phloem companion cells suggests its role in iron translocation in aboveground plant organs.Plant Signaling & Behavior, 1925020.

      24.Zhen, X., Xu, F., Zhang, W., Li, N., & Li, X. (2019). Overexpression of rice gene OsATG8b confers tolerance to nitrogen starvation and increases yield and nitrogen use efficiency (NUE) in Arabidopsis.PloS one, 14(9), e0223011.

      25.Yue Zhu, Wenmin Qiu, Yuhong Li, Jinjuan Tan, Xiaojiao Han, Longhua Wu, Yugen Jiang, Zhiping Deng, Chao Wu, Renying Zhuo,Quantitative proteome analysis reveals changes of membrane transport proteins in Sedum plumbizincicola under cadmium stress,Chemosphere

      26.Yang, M., Ismayil, A., Jiang, Z., Wang, Y., Zheng, X., Yan, L., ... & Liu, Y. (2021). A viral protein disrupts vacuolar acidification to facilitate virus infection in plants.The EMBO Journal, e108713.

      27.Yu, Q., Liu, Y. L., Sun, G. Z., Liu, Y. X., Chen, J., Zhou, Y. B., ... & Lan, J. H. (2021). Genome-Wide Analysis of the Soybean Calmodulin-Binding Protein 60 Family and Identification of GmCBP60A-1 Responses to Drought and Salt Stresses.International Journal of Molecular Sciences, 22(24), 13501.

      28.Qun Wang, Mingmin Wang, Jian Chen, Weiwei Qi, Jinsheng Lai, Zeyang Ma, Rentao Song,ENB1encodes a cellulose synthase 5 that directs synthesis of cell wall ingrowths in maize basal endosperm transfer cells,The Plant Cell,2021;, koab312,https://doi.org/10.1093/plcell/koab312

      29.Miao, G., Han, J., Liu, C. X., Liu, J., Wang, C. R., & Wang, S. C. (2022). PDR6-mediated camalexin efflux and disease resistance are regulated through direct phosphorylation by the kinases OXI1 and AGC2-2. bioRxiv.

      30.Vassiliki A Michalopoulou, Glykeria Mermigka, Konstantinos Kotsaridis, Andriani Mentzelopoulou, Patrick H N Celie, Panagiotis N Moschou, Jonathan D G Jones, Panagiotis F Sarris, The host exocyst complex is targeted by a conserved bacterial type-III effector that promotes virulence, The Plant Cell, 2022;, koac162, https://doi.org/10.1093/plcell/koac162

      31.Jin Gao; Gai Huang; Xin Chen; Yu‐Xian Zhu.(2022).PROTEIN S -ACYL TRANSFERASE 13/16 (PAT13/PAT16) modulate disease resistance by S -acylation of the NB-LRR protein R5L1 in Arabidopsis.Journal of Integrative Plant Biology.

      32.Zhang, Y., Dong, G., Wu, L., Wang, X., Chen, F., Xiong, E., ... & Yu, Y. (2022). Formin protein DRT1 affects gross morphology and chloroplast relocation in rice. Plant Physiology.

      33.Rehman, H. M., Chen, S., Zhang, S., Khalid, M., Uzair, M., Wilmarth, P. A., ... & Lam, H. M. (2022). Membrane Proteomic Profiling of Soybean Leaf and Root Tissues Uncovers Salt-Stress-Responsive Membrane Proteins. International Journal of Molecular Sciences, 23(21), 13270.

      34.Wang, Y., Teng, Z., Li, H., Wang, W., Xu, F., Sun, K., ... & Tang, J. (2022). An activated form of NB-ARC protein RLS1 functions with cysteine-rich receptor-like protein RMC to trigger cell death in rice. Plant Communications, 100459.

      35.Serrano, N., Pejchar, P., Hubálek, M., & Potocký, M. (2022). Comprehensive analysis of glycerolipid dynamics during tobacco pollen germination and pollen tube growth. Frontiers in Plant Science, 4336.

      36.Grones, P., De Meyer, A., Pleskot, R., Mylle, E., Kraus, M., Vandorpe, M., ... & Van Damme, D. (2022). The endocytic TPLATE complex internalizes ubiquitinated plasma membrane cargo. Nature Plants, 1-17.

      37.Zhang, Y., Dong, G., Wu, L., Wang, X., Chen, F., Xiong, E., ... & Yu, Y. (2023). Formin protein DRT1 affects gross morphology and chloroplast relocation in rice. Plant Physiology, 191(1), 280-298.

      38.Tian, R., Jiang, J., Bo, S., Zhang, H., Zhang, X., Hearne, S. J., ... & Fu, Z. (2023). Multi-omic characterization of the maize GPI synthesis mutant gwt1 with defects in kernel development. BMC Plant Biology, 23(1), 1-15.

      39.Kim, B., Yu, W., Kim, H., Dong, Q., Choi, S., Prokchorchick, M., ... & Segonzac, C. (2023). A plasma membrane nucleotide-binding leucine-rich receptor mediates the recognition of the Ralstonia pseudosolanacearum effector RipY in Nicotiana benthamiana. Plant Communications, 100640.

      40.Wang, Z., Liu, X., Yu, J., Yin, S., Cai, W., Kim, N. H., ... & Wan, L. (2023). Plasma membrane association and resistosome formation of plant helper immune receptors. Proceedings of the National Academy of Sciences, 120(32), e2222036120.

      41.Xie, B., Luo, M., Li, Q., Shao, J., Chen, D., Somers, D. E., ... & Shi, H. (2023). NUA positively regulates plant immunity by coordination with ESD4 to deSUMOylate TPR1 in Arabidopsis. New Phytologist.

      42.Liu, L., Chen, J., Gu, C., Wang, S., Xue, Y., Wang, Z., ... & Zhou, Z. (2023). The exocyst subunit CsExo70B promotes both fruit length and disease resistance via regulating receptor kinase abundance at plasma membrane in cucumber. Plant Biotechnology Journal.

      43.Zhao, W., Ji, Y., Zhou, Y., & Wang, X. (2023). Cellular COPI components promote geminivirus infections by facilitating the chloroplast localization of viral C4/AC4 proteins. bioRxiv, 2023-11.

      44.Zhou, Y., Wang, Y., Zhang, D., & Liang, J. (2024). Endomembrane-biased dimerization of ABCG16 and ABCG25 transporters determines their substrate selectivity in ABA-regulated plant growth and stress responses. Molecular Plant, 17(3), 478-495.

      45.Han, J., Liu, C. X., Liu, J., Wang, C. R., Wang, S. C., & Miao, G. (2024). AGC kinases OXI1 and AGC2-2 regulate camalexin secretion and disease resistance by phosphorylating transporter PDR6. Plant Physiology, kiae186.

      46.Huang, J., Guan, X., Zhong, X., Jia, P., Zhang, H., & Ruan, H. (2024). Structural and Functional Insights into an Arabidopsis NBS-LRR Receptor in Nicotiana benthamiana. American Journal of Molecular Biology, 14(2), 84-96.

      47.Man, Y., Zhang, Y., Chen, L., Zhou, J., Bu, Y., Zhang, X., ... & Lin, J. The VAMP-associated protein VAP27-1 plays a crucial role in plant resistance to ER stress by modulating ER-PM contact architecture in Arabidopsis. Plant Communications.

      48.Wang, G., Chen, X., Yu, C., Shi, X., Lan, W., Gao, C., ... & Wang, E. (2024). Release of a ubiquitin brake activates OsCERK1-triggered immunity in rice. Nature, 1-7.

      49.Xu, L. L., Cui, M. Q., Xu, C., Zhang, M. J., Li, G. X., Xu, J. M., ... & Zheng, S. J. (2024). A clade of receptor-like cytoplasmic kinases and 14-3-3 proteins coordinate inositol hexaphosphate accumulation. Nature Communications, 15(1), 5107.

      50.Li, H., Ou, Y., Zhang, J., Huang, K., Wu, P., Guo, X., ... & Cao, Y. (2024). Dynamic modulation of nodulation factor receptor levels by phosphorylation-mediated functional switch of a RING-type E3 ligase during legume nodulation. Molecular Plant.

      51.Li, Y. B., Liu, C., Shen, N., Zhu, S., Deng, X., Liu, Z., ... & Tang, D. (2024). The actin motor protein OsMYA1 associates with OsExo70H1 and contributes to rice secretory defense by modulating OsSyp121 distribution. Journal of Integrative Plant Biology.

      52.Zhao, W., Ji, Y., Zhou, Y., & Wang, X. (2024). Geminivirus C4/AC4 proteins hijack cellular COAT PROTEIN COMPLEX I for chloroplast targeting and viral infections. Plant Physiology, kiae436.

      53.Huang, J., Chen, K., Li, Z., Zhang, H., Guan, X., Zhong, X., & Jia, P. (2024). Insight into Function and Subcellular Localization of a Type III-Secreted Effector in Pseudomonas syringae pv. tomato DC3000. American Journal of Plant Sciences, 15(10), 835-846.

      54.Meng, Y., Xiao, Y., Zhu, S., Xu, L., & Huang, L. V m S pm1: a secretory protein from Valsa mali that targets apple's abscisic acid receptor M d PYL 4 to suppress jasmonic acid signaling and enhance infection. New Phytologist.




    close
    close